OpenCV人脸识别之二:模型训练

本系列人脸识别文章用的是opencv2,最新版的opencv3.2的代码请参考文章:

OpenCV之识别自己的脸——C++源码放送


在之前人脸识别之一数据收集和预处理之中,已经下载了ORL人脸数据库,并且为了识别自己的人脸写了一个拍照程序自拍。之后对拍的照片进行人脸识别和提取,最后我们得到了一个包含自己的人脸照片的文件夹s41。在博客的最后我们提到了一个非常重要的文件——at.txt。

一、csv文件的生成

当我们写人脸模型的训练程序的时候,我们需要读取人脸和人脸对应的标签。直接在数据库中读取显然是低效的。所以我们用csv文件读取。csv文件中包含两方面的内容,一是每一张图片的位置所在,二是每一个人脸对应的标签,就是为每一个人编号。这个at.txt就是我们需要的csv文件。生成之后它里面是这个样子的:

前面是图片的位置,后面是图片所属人脸的人的标签。
要生成这样一个文件直接用手工的方式一个一个输入显然不可取的,毕竟这里有400多张图片。而且这种重复性的工作估计也没人想去做。所以我们可以用命令行的方式简化工作量;或者用opencv自带的Python脚本来自动生成。
命令行方式是这样的。比如我的数据集在C:\Users\bingbuyu\Downloads\att_faces文件夹下面,我就用下面两行命令:

然后数据集文件夹下面就多出了一个at.txt文件,但是现在是只有路径没有标签的。像下面这样:

标签需要手动敲上去。。。也挺麻烦的。
好在opencv教程里面为我们提供了自动生成csv文件的脚本。路径类似这样:F:\opencv\sources\modules\contrib\doc\facerec\src\create_csv.py。我不知道怎么用命令行参数的形式运行Python脚本,所以只能把代码里面的BASE_PATH手动的改成自己的数据集路径,改完大致是这样:

然后运行这个脚本就可以生成一个既有路径又有标签的at.txt了。

二、训练模型
现在数据集、csv文件都已经准备好了。接下来要做的就是训练模型了。
这里我们用到了opencv的Facerecognizer类。opencv中所有的人脸识别模型都是来源于这个类,这个类为所有人脸识别算法提供了一种通用的接口。文档里的一个小段包含了我们接下来要用到的几个函数:

OpenCV 自带了三个人脸识别算法:Eigenfaces,Fisherfaces 和局部二值模式直方图 (LBPH)。这里先不去深究这些算法的具体内容,直接用就是了。如果有兴趣可以去看相关论文。接下来就分别训练这三种人脸模型。这个时候就能体现出Facerecognizer类的强大了。因为每一种模型的训练只需要三行代码:

当然在这之前要先把之前图片和标签提取出来。这时候就是at.txt派上用场的时候了。

在模型训练好之后我们拿数据集中的最后一张图片做一个测试,看看结果如何。
`cpp
Mat testSample = images[images.size() - 1];
int testLabel = labels[labels.size() - 1];

//。。。。这里省略部分代码。。。。。。。。
// 下面对测试图像进行预测,predictedLabel是预测标签结果
int predictedLabel = model->predict(testSample);
int predictedLabel1 = model1->predict(testSample);
int predictedLabel2 = model2->predict(testSample);

cvpy.jpg

0 条评论
发表一条评论