分类: [目标检测]

用OpenCV和Dlib进行人脸颜值预测

本项目部分基于这个博客Computer Vision for Predicting Facial Attractiveness。按照上面这个博客复现起来比较麻烦(当然是对我而言),而且我想要做的是对于任意一张人脸进行检测之后都可以进行颜值估计,但是他给出的代码还需要进行改动不少才行。现在就把自己的复现过程记录下来。 本文中只展示了部分关键代码。完整代码和测试用的数据可以在GitHub上获取。 不同点 在提取人脸关键点的时候,原文中提到用的是CLM framework,本文用的是之前配置好的Dlib。 实现了对自选图片中人脸的颜值估计 用到的Python库 numpy opencv dl ......

OpenCV检测篇(二)——笑脸检测

前言 由于本文与上一篇OpenCV检测篇(一)——猫脸检测具有知识上的连贯性,所以建议没读过前一篇的先去阅读一下前一篇,前面讲过的内容这里会省略掉。 笑脸检测 其实也没什么可省略的,因为跟在opencv中,无论是人脸检测、人眼检测、猫脸检测、行人检测等等,套路都是一样的。正所谓: ####自古深情留不住,总是套路得人心。 发挥主要作用的函数有且仅有一个:detectMultiScale()。前一篇猫脸检测中已经提到过这个函数,这里就不再详细赘述。 这里只说一下笑脸检测的流程,显然也都是套路: 1.加载人脸检测器进行人脸检测 2 加载笑 ......

OpenCV检测篇(一)——猫脸检测

OpenCV OpenCV是时下最流行的基于C++的开源计算机视觉库,它功能丰富,函数众多,从最基本的读写图片,到简单的图像处理(比如降噪滤波、边缘检测、图像变换、特征提取等),再到更加高级的行人检测、人脸识别、文本识别等,尽皆包含。在OpenCV提供的函数的基础上,我们可以很方便地开发自己的应用,实现自己的算法。总的来说,就是OpenCV非常强大。具体有多强大?那得用了才知道。 很多要做人脸识别,要用到SIFT特征的人都问过的一个问题是,为什么配置好opencv之后,却找不到人脸识别的头文件,找不到SIFT在哪?这是因为OpenCV3. ......

OpenCV人脸检测(C++/Python)

之前一直觉得人脸检测是非常麻烦的,即使是用OpenCV麻烦到我都不敢去碰。这两天仔细看了下,如果只是调用opencv自带的分类器和函数的话,简直是简单。这不,正好最近也在学习Python索性就用C++和Python两种语言都实现一下。当然,我现在这个是最简单的版本。 步骤 调用opencv训练好的分类器和自带的检测函数检测人脸人眼等的步骤简单直接: 1. 加载分类器,当然分类器事先要放在工程目录中去。分类器本来的位置是在*\opencv\sources\data\haarcascades(harr分类器,也有其他的可以用,也可以自己训练) 2. 调用detectMultiScale( ......